Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: A review
نویسنده
چکیده
Baseflow is the portion of streamflow that is sustained between precipitation events, fed to stream channels by delayed (usually subsurface) pathways. Understanding baseflow processes is critical to issues of water quality, supply, and habitat. This review synthesizes the body of global literature investigating relationships between baseflow and watershed characteristics of geomorphology, soil, and land use, as well as the potential effects of climate change, with an emphasis on humid, tropical and temperate (non-snowpackdominated) regions. Such factors are key controls on baseflow through their influence on infiltration, rates of water removal from the catchment, and subsurface storage properties. The literature shows that there is much that remains to be resolved in gaining a solid understanding of the influence of watershed characteristics on baseflow. While it is clear that watershed geomorphology influences baseflow, there is no consensus on which geomorphic parameters are most closely linked to subsurface storage and baseflow. Many studies associate higher watershed forest cover with lower baseflows, attributed to high evapotranspiration rates of forests, while other studies indicate increased baseflow with higher watershed forest cover due to higher infiltration and recharge of subsurface storage. The demonstrated effects of agriculture and urbanization are also inconsistent, due to varied additions of imported water and extremely variable background conditions. This review underscores the need for more research that addresses multiple aspects of the watershed system in explaining baseflows, and for methodological consistency to allow for more fruitful comparisons across case studies. These needs are of immediate demand, given scientific and management emphasis on environmental flows required for maintenance of key ecosystem services.
منابع مشابه
Simulation of the catchments hydrological processes in arid, semi-arid and semi-humid areas
Hydrological processes and their spatial distribution directly are relevant to climate, topography, geology, and land use in the watershed. Therefore, use of a model whit integrity and high performance for simulating the process in deferent watersheds is very important. In this study was assessment performance of semi-distributed SWAT model in simulating hydrology processes in three watersheds ...
متن کاملHydrologic responses of watershed assessment to land cover and climate change using soil and water assessment tool model
Predicting the impact of land cover and climate change on hydrologic responses using modeling tools are essential in understanding the movement and pattern of hydrologic processes within the watershed. The paper provided potential implications of land conversions and climate change scenarios on the hydrologic processes of Muleta watershed using soil and water assessment tool model. Model inputs...
متن کاملClimate and soil properties limit the positive effects of land use reversion on carbon storage in Eastern Australia
Australia's "Direct Action" climate change policy relies on purchasing greenhouse gas abatement from projects undertaking approved abatement activities. Management of soil organic carbon (SOC) in agricultural soils is an approved activity, based on the expectation that land use change can deliver significant changes in SOC. However, there are concerns that climate, topography and soil texture w...
متن کاملThe Use of Housing System in the Management of Heat Stress in Poultry Production in Hot and Humid Climate: a Review
There is a gap between the population growth and protein supply in many tropical countries where per capita income is low and the majority of people consume less protein than a daily standard for recommended protein intake. Poultry egg production remains the fastest route to bridging the protein demand-supply gap in these regions. However, poultry are faced with heat stress in the tropics which...
متن کاملValidation of a Locally Revised Topographic Index in Central New Jersey, USA
Saturation excess is a major runoff process in humid regions such as the US Northeast. Topographic index (TI) is used to simulate the pattern of runoff-contributing areas following a saturation excess runoff process. Although TI is useful to delineate saturated areas, i.e., hydrologically sensitive areas, for taking spatially distinctive actions in watersheds for improving water quality, local ...
متن کامل